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Abstract. In this article we present explicit formulae for q-differentiation on quantum spaces which could
be of particular importance in physics, i.e., q-deformed Minkowski space and q-deformed Euclidean space
in three or four dimensions. The calculations are based on the covariant differential calculus of these
quantum spaces. Furthermore, our formulae can be regarded as a generalization of Jackson’s q-derivative
to three and four dimensions.

1 Introduction

One might say that the ideas of differential calculus are as
old as physical science itself. Since its invention by Newton
and Leibniz, an essential change of these ideas has not
been necessary in the past. Although this can be seen as
a great success, one cannot ignore the fact that up to
now physicists have not been able to present a unified
description of nature by using this traditional tool, i.e., a
theory which does not break down at any possible space-
time distances.

Quantum spaces, however, which are defined as co-
module algebras of quantum groups and which can be
interpreted as deformations of ordinary co-ordinate alge-
bras [1] could provide a proper framework for developing a
new kind of non-commutative analysis [2,3]. For our pur-
poses it is sufficient to consider a quantum space as an
algebra Aq of formal power series in the non-commuting
co-ordinates X1, X2, . . . , Xn,

Aq = C [[X1, . . . Xn]] /I, (1)

where I denotes the ideal generated by the relations of the
non-commuting co-ordinates.

The algebra Aq satisfies the Poincaré–Birkhoff–Witt
property, i.e., the dimension of the subspace of homoge-
neous polynomials should be the same as for commuting
co-ordinates. This property is the deeper reason why the
monomials of normal ordering X1X2 . . . Xn constitute a
basis of Aq. In particular, we can establish a vector space
isomorphism between Aq and the commutative algebra A
generated by ordinary co-ordinates x1, x2, . . . , xn:

W : A −→ Aq, (2)

W(xi1
1 . . . xin

n ) = Xi1
1 . . . Xin

n .
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This vector space isomorphism can be extended to an alge-
bra isomorphism introducing a non-commutative product
in A, the so-called �-product [4,5]. This product is defined
by the relation

W(f � g) =W(f) · W(g), (3)

where f and g are formal power series in A. In [6] we have
calculated the �-product for quantum spaces which could
be of particular importance in physics, i.e., q-deformed
Minkowski space and q-deformed Euclidean space in three
or four dimensions.

Additionally, for each of these quantum spaces exists a
symmetry algebra [7,8] and a covariant differential calculus
[9], which can provide an action upon the quantum spaces
under consideration. By means of the relation

W(h � f) := h �W(f), h ∈ H, f ∈ A, (4)

we are also able to introduce an action upon the corre-
sponding commutative algebra.

It is now our aim to present explicit formulae for the
action of the partial derivatives on these spaces. In addi-
tion we have worked out representations of the generators
of the q-deformed Lorentz algebra and the algebra of q-
deformed angular momentum in three or four dimensions.
All explicit formulae belong to left representations, as ev-
ery right representation can be deduced from a left one by
applying some simple rules.

2 q-Deformed Euclidean space
in three dimensions

The q-deformed Euclidean space in three dimensions is
spanned by the non-commuting co-ordinates X+, X3, X−.
Their commutation relations with the partial derivatives
∂+, ∂3, ∂− can be written in the general form [10]

∂AXB = gAB + (R̂−1)AB
CDXC∂D, (5)
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A, B, C, D = 3,±,

where R̂−1 denotes the inverse of the R-matrix of the quan-
tum group SOq (3) and gAB is the corresponding metric.
Explicitly we have

∂+X+ = X+∂+, (6)

∂+X3 = q2X3∂+− q2λλ+X+∂3,

∂+X− = −q + q4X−∂+− q3λλ+X3∂3+ q3λ2λ+X+∂−,

∂3X+ = q2X+∂3, (7)

∂3X3 = 1 + q2X3∂3− q3λλ+X+∂−,

∂3X− = q2X−∂3− q2λλ+X3∂−,

∂−X+ = −q−1+ q4X+∂−, (8)

∂−X3 = q2X3∂−,

∂−X− = X−∂−,

with λ = q − q−1 and λ+ = q + q−1. On the q-deformed
version of 3-dimensional Euclidean space there exists a
second covariant differential calculus. Its defining relations
read

∂̂AXB = gAB + (R̂)AB
CDXC ∂̂D, A, B, C, D = 3,±. (9)

Written out, we get

∂̂+X+ = X+∂̂+, (10)

∂̂+X3 = q−2X3∂̂+,

∂̂+X− = −q + q−4X−∂̂+,

∂̂3X+ = q−2X+∂̂3+ q−2λλ+X3∂̂+, (11)

∂̂3X3 = 1 + q−2X3∂̂3+ q−3λλ+X−∂̂+,

∂̂3X− = q−2X−∂̂3,

∂̂−X+ = −q−1+ q−4X+∂̂−+ q−3λλ+X3∂̂3

+q−3λ−2λ+X−∂̂+, (12)

∂̂−X3 = q−2X3∂̂−+ q−2λλ+X−∂̂3,

∂̂−X− = X−∂̂−.

These relations yield a Hopf structure for the two sets
of derivatives which can be derived by the same method
already explained in [21]. Using the generators of angular
momentum1 L+, L−, τ−1/2 and the scaling operator Λ [10]
one obtains in the first case for the co-product ∆, the
antipode S and the co-unit ε the following expressions:

∆(∂−) = ∂−⊗ 1 + Λ
1
2 τ− 1

2 ⊗ ∂−, (13)
1 One has to pay attention to the different normalisation of

the LA. Analogous to [11] we made the substitution LA →
−q−3LA

∆(∂3) = ∂3⊗ 1 + Λ
1
2 ⊗ ∂3+ λλ+Λ

1
2 L+⊗ ∂−,

∆(∂+) = ∂+⊗ 1 + Λ
1
2 τ

1
2 ⊗ ∂+ + qλλ+Λ

1
2 τ

1
2 L+⊗ ∂3

+q2λ2λ+Λ
1
2 τ

1
2 (L+)2⊗ ∂−,

S(∂−) = −Λ− 1
2 τ

1
2 ∂−, (14)

S(∂3) = −Λ− 1
2 ∂3+ q2λλ+Λ− 1

2 τ
1
2 L+∂−,

S(∂+) = −Λ− 1
2 τ− 1

2 ∂++ qλλ+Λ− 1
2 L+∂3

−q4λ2λ+Λ− 1
2 τ

1
2 (L+)2∂−,

ε(∂+) = ε(∂3) = ε(∂−) = 0. (15)

In the second case the Hopf structure is given by

∆(∂̂+) = ∂̂+⊗ 1 + Λ− 1
2 τ− 1

2 ⊗ ∂̂+, (16)

∆(∂̂3) = ∂̂3⊗ 1 + Λ− 1
2 ⊗ ∂̂3+ λλ+Λ− 1

2 L−⊗ ∂̂+,

∆(∂̂−) = ∂̂−⊗ 1 + Λ− 1
2 τ− 1

2 ⊗ ∂̂−

+q−1λλ+Λ− 1
2 τ

1
2 L−⊗ ∂̂3

+q−2λ2λ+Λ− 1
2 τ

1
2 (L−)2⊗ ∂̂+,

S(∂̂+) = −Λ
1
2 τ

1
2 ∂̂+, (17)

S(∂̂3) = −Λ
1
2 ∂̂3+ q−2λλ+Λ

1
2 τ

1
2 L−∂̂+,

S(∂̂−) = −Λ
1
2 τ− 1

2 ∂̂−+ q−1λλ+Λ
1
2 L−∂̂3

−q−4λ2λ+Λ
1
2 τ

1
2 (L−)2∂̂+,

ε(∂̂+) = ε(∂̂3) = ε(∂̂−) = 0. (18)

Due to the relation

∂A � (f � g) = (∂A
(1) � f) � (∂A

(2) � g), (19)

the Leibniz rules for products of arbitrary power series can
be read off from the co-product ∆(∂A) = ∂A

(1) ⊗ ∂A
(2) quite

easily [12,13].
For applying this formula, however, it is necessary to

know the representations of the generators L+, L−, τ−1/2

and the scaling operator Λ, which can be computed from
the commutation relations

L+X+ = X+L+, (20)

L+X3 = X3L+− qX+τ− 1
2 ,

L+X− = X−L+−X3τ− 1
2 ,

L−X+ = X+L−+ X3τ− 1
2 , (21)

L−X3 = X3L−+ q−1X−τ− 1
2 ,

L−X− = X−L−,

τ− 1
2 X± = q±2X±τ− 1

2 , (22)
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τ− 1
2 X3 = X3τ− 1

2 ,

Λ
1
2 XA = q2XAΛ

1
2 , A = ±, 3.

To calculate the explicit form of their action on the quan-
tum space algebra we iterate the action of the generators on
monomials of normal ordering X+X3X− until all genera-
tors have moved to the right. With the relation T �1 = ε(T )
and after a possible normal ordering the wanted represen-
tations follow immediately. Such calculations can also be
found in [14]. Finally, in the sense of definition (4) the
action of the generators L+, L−, τ−1/2 and the scaling
operator Λ take the form2

L+ � f = −q2x3(D−
q4f)(q−2x−)− qx+(D3

q2f)(q−2x−),

L− � f = x3(D+
q4f)(q−2x−) + q−1x−(D3

q2f)(q−2x−),

τ± 1
2 � f = f(q∓2x+, q±2x−), (23)

Λ± 1
2 � f = f(q±2x+, q±2x3, q±2x−).

Similar expressions can be derived for the partial deriva-
tives ∂+, ∂3, ∂− with the end result

∂− � f = −q−1D+
q4f, (24)

∂3 � f = D3
q2f(q2x+),

∂+ � f = −qD−
q4f(q2x3)− qλx+(D3

q2)2f.

In the case of the second differential calculus the repre-
sentations of the partial derivatives take on a very simple
form, if they refer to the ordering X−X3X+. For this new
ordering we have

∂̂+ �̃ f = −qD−
q−4f, (25)

∂̂3 �̃ f = D3
q−2f(q−2x−),

∂̂− �̃ f = −q−1D+
q−4f(q−2x3) + q−1λx−(D3

q−2)2f.

In addition, we give the identities

∂A � (Û−1f) = Û−1(∂A �̃ f), (26)

∂̂A �̃ (Ûf) = Û(∂̂A � f),

where3

Û−1f =
∞∑

i=0

λi (x
3)2i

[[i]]q4 !
q2n̂3(n̂++n̂−+i)

·
(
D+

q4D
−
q4

)i

f(x), (27)

Ûf =
∞∑

i=0

(−λ)i (x3)2i

[[i]]q−4 !
q−2n̂3(n̂++n̂−+i)

2 For notation see Appendix A
3 For notation see again Appendix A

·
(
D+

q−4D
−
q−4

)i

f(x). (28)

With these formulae at hand, which can easily be derived
from the considerations in [6], we are in a position to deal
with representations of one given ordering, as the operators
Û−1 and Û transform functions of ordering X−X3X+ to
the corresponding ones of ordering X+X3X− and vice
versa.

All representations considered so far have been com-
puted by commuting the acting generators from the left
side of a monomial to the right. These representations are
thus called left representations. However, if we commute
the acting generators from the right side of a monomial
to the left, right representations will consequently arise.
But these right representations can be read off from left
ones quite easily, as right representations of a generator
are always linked to left ones via the identity

∂A � f = f 	 ∂A. (29)

From the conjugation properties [10]

X± = −q±1X∓, (30)

X3 = X3,

∂+ = −q−5∂̂−, (31)

∂3 = −q−6∂̂3,

∂− = −q−7∂̂+,

L± = −q±1L∓, (32)

one obtains the translation rules

f 	 L± +↔−←→ L∓ � f, (33)

f 	 ∂± +↔−←→ −q−6∂̂∓ � f, (34)

f 	 ∂3 +↔−←→ −q−6∂̂3 � f,

f 	 ∂̂± +↔−←→ −q6∂∓ � f, (35)

f 	 ∂̂3 +↔−←→ −q6∂3 � f,

where the symbol +↔−←→ denotes that one can make a tran-
sition between the two expressions by applying the substi-
tutions

x± → x∓, D±
qa → D∓

qa n̂± → n̂∓. (36)

The following shall serve as an example:

x+x−(D+
q )2D−

q f(q2x−) (37)

+↔−←→ x−x+(D−
q )2D+

q f(q2x+).

The right representations of the generators τ3 and Λ are
derived most easily from the identity

f 	 h = S−1(h) � f ; (38)
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hence

f 	 τ± 1
2 = S−1

(
τ± 1

2

)
� f = τ± 1

2 � f, (39)

f 	 Λ± 1
2 = S−1

(
Λ± 1

2

)
� f = Λ∓ 1

2 � f.

Finally, let us remark that due to the relation

f∂A = ∂A
(2)(f 	 ∂A

(1)) (40)

again the co-products of the two differential calculi directly
yield Leibniz rules for right representations of the partial
derivatives.

3 q-Deformed Euclidean space
in four dimensions

The 4-dimensional q-deformed Euclidean space can be
treated in very much the same way as the 3-dimensional
case. For the relations between partial derivatives and co-
ordinates we now have

∂iXj = gij + q(R̂−1)ij
klX

k∂l, (41)

i, j, k, l = 1, . . . , 4,

where gij denotes the 4-dimensional Euclidean quantum
space metric and R̂ the R-matrix of SOq(4). With the
notation in [12] these relations read explicitly

∂1X1 = X1∂1, (42)

∂1X2 = qX2∂1,

∂1X3 = qX3∂1,

∂1X4 = q−1+ q2X4∂1,

∂2X1 = qX1∂2− qλX2∂1, (43)

∂2X2 = X2∂2,

∂2X3 = 1 + q2X3∂2+ q2λX4∂1,

∂2X4 = qX4∂2,

∂3X1 = qX1∂3− qλX3∂1, (44)

∂3X2 = 1 + q2X2∂3+ q2λX4∂1,

∂3X3 = X3∂3,

∂3X4 = qX4∂3,

∂4X1 = q + q2X1∂4+ q2λ
(
X2∂3+ X3∂2+ λX4∂1) ,

∂4X2 = qX2∂4− qλX4∂2, (45)

∂4X3 = qX3∂4− qλX4∂3,

∂4X4 = X4∂4.

For the second set of derivatives the following relations
hold:

∂iXj = gij + q−1(R̂)ij
klX

k∂l, (46)

i, j, k, l = 1, . . . , 4.

In a more explicit form one can write

∂̂1X1 = X1∂̂1, (47)

∂̂1X2 = q−1X2∂̂1+ q−1λX1∂̂2,

∂̂1X3 = q−1X3∂̂1+ q−1λX1∂̂3,

∂̂1X4 = q−1+ q−2X4∂̂1− q−2λ(X2∂̂3+ X3∂̂2− λX1∂̂4),

∂̂2X1 = q−1X1∂̂2, (48)

∂̂2X2 = X2∂̂2,

∂̂2X3 = 1 + q−2X3∂̂2− q−2λX1∂̂4,

∂̂2X4 = q−1X4∂̂2+ q−1λX2∂̂4,

∂̂3X1 = q−1X1∂̂3, (49)

∂̂3X2 = 1 + q−2X2∂̂3− q−2λX1∂̂4,

∂̂3X3 = X3∂̂3,

∂̂3X4 = q−1X4∂̂3+ q−1λX3∂̂4,

∂̂4X1 = q + q−2X1∂̂4, (50)

∂̂4X2 = q−1X2∂̂4,

∂̂4X3 = q−1X3∂̂4,

∂̂4X4 = X4∂̂4.

From these relations we again can deduce a Hopf struc-
ture for the derivatives ∂i, i = 1, . . . , 4, which in terms of
the Uq (so4) generators L±

i , Ki (i = 1, 2) and the scaling
operator Λ becomes

∆(∂1) = ∂1⊗ 1 + Λ
1
2 K

1
2
1 K

1
2
2 ⊗ ∂1, (51)

∆(∂2) = ∂2⊗ 1 + Λ
1
2 K

− 1
2

1 K
1
2
2 ⊗ ∂2

+qλΛ
1
2 K

1
2
1 K

1
2
2 L+

1 ⊗ ∂1,

∆(∂3) = ∂3⊗ 1 + Λ
1
2 K

1
2
1 K

− 1
2

2 ⊗ ∂3

+qλΛ
1
2 K

1
2
1 K

1
2
2 L+

2 ⊗ ∂1,

∆(∂4) = ∂4⊗ 1 + Λ
1
2 K

− 1
2

1 K
− 1

2
2 ⊗ ∂4

−q2λ2Λ
1
2 K

1
2
1 K

1
2
2 L+

1 L+
2 ⊗ ∂1

− qλΛ
1
2 K

− 1
2

1 K
1
2
2 L+

2 ⊗ ∂2

−qλΛ
1
2 K

1
2
1 K

− 1
2

2 L+
1 ⊗ ∂3,

S(∂1) = −Λ− 1
2 K

− 1
2

1 K
− 1

2
2 ∂1, (52)

S(∂2) = −Λ− 1
2 K

1
2
1 K

− 1
2

2 (∂2− q2λL+
1 ∂1),
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S(∂3) = −Λ− 1
2 K

− 1
2

1 K
1
2
2 (∂3− q2λL+

2 ∂1),

S(∂4) = −Λ− 1
2 K

1
2
1 K

1
2
2 ∂4

−q2λΛ− 1
2 K

1
2
1 K

1
2
2 (L+

1 ∂3+ L+
2 ∂2)

− q4λ2Λ− 1
2 K

1
2
1 K

1
2
2 L+

1 L+
2 ∂1,

ε(∂1) = ε(∂2) = ε(∂3) = ε(∂4) = 0. (53)

In the same manner we get for the other derivatives ∂̂i,
i = 1, . . . , 4,

∆(∂̂1) = ∂̂1⊗ 1 + Λ− 1
2 K

− 1
2

1 K
− 1

2
2 ⊗ ∂̂1 (54)

−q−2λ2Λ− 1
2 K

1
2
1 K

1
2
2 L−

1 L−
2 ⊗ ∂̂4

−q−1λΛ− 1
2 K

1
2
1 K

− 1
2

2 L−
1 ⊗ ∂̂2

−q−1λΛ− 1
2 K

− 1
2

1 K
1
2
2 L−

2 ⊗ ∂̂3,

∆(∂̂2)) = ∂̂2⊗ 1 + Λ− 1
2 K

1
2
1 K

− 1
2

2 ⊗ ∂̂2

+q−1λΛ− 1
2 K

1
2
1 K

1
2
2 L−

2 ⊗ ∂̂4,

∆(∂̂3) = ∂̂3⊗ 1 + Λ− 1
2 K

− 1
2

1 K
1
2
2 ⊗ ∂̂3

+q−1λΛ− 1
2 K

1
2
1 K

1
2
2 L−

1 ⊗ ∂̂4,

∆(∂̂4) = ∂̂4⊗ 1 + Λ− 1
2 K

1
2
1 K

1
2
2 ⊗ ∂̂4,

S(∂̂1) = −Λ
1
2 K

1
2
1 K

1
2
2 ∂̂1 (55)

−q−2λΛ
1
2 K

1
2
1 K

1
2
2 (L−

1 ∂̂2+ L−
2 ∂̂3)

+q−4λ2Λ
1
2 K

1
2
1 K

1
2
2 L−

1 L−
2 ∂̂4,

S(∂̂2) = −Λ
1
2 K

− 1
2

1 K
1
2
2 (∂̂2− q−2λL−

2 ∂̂4),

S(∂̂3) = −Λ
1
2 K

− 1
2

1 K
− 1

2
2 (∂̂3− q−2λL−

1 ∂̂4),

S(∂̂4) = −Λ
1
2 K

− 1
2

1 K
− 1

2
2 ∂̂4,

ε(∂̂1) = ε(∂̂2) = ε(∂̂3) = ε(∂̂4) = 0. (56)

Note that the above expressions again yield Leibniz rules
for products of functions, if the representations of the given
Uq (so4) generators and the Λ operator are known. Toward
this end we need their commutation relations with the
quantum space coordinates, for which we have [15]

L+
1 X1 = qX1L+

1 − q−1X2, (57)

L+
1 X2 = q−1X2L+

1 ,

L+
1 X3 = qX3L+

1 + q−1X4,

L+
1 X4 = q−1X4L+

1 ,

L+
2 X1 = qX1L+

2 − q−1X3, (58)

L+
2 X2 = qX2L+

2 + q−1X4,

L+
2 X3 = q−1X3L+

2 ,

L+
2 X4 = q−1X4L+

2 ,

L−
1 X1 = qX1L−

1 , (59)

L−
1 X2 = q−1X2L−

1 − qX1,

L−
1 X3 = qX3L−

1 ,

L−
1 X4 = q−1X4L−

1 + qX3,

L−
2 X1 = qX1L−

2 , (60)

L−
2 X2 = qX2L−

2 ,

L−
2 X3 = q−1X3L−

2 − qX1,

L−
2 X4 = q−1X4L−

2 + qX2,

K1X
1 = q−1X1K1, (61)

K1X
2 = qX2K1,

K1X
3 = q−1X3K1,

K1X
4 = qX4K1,

K2X
1 = q−1X1K2, (62)

K2X
2 = q−1X2K2,

K2X
3 = qX3K2,

K2X
4 = qX4K2,

ΛXi = q2XiΛ, i = 1, . . . , 4. (63)

In normal ordering X1X2X3X4 these relations lead to left
representations of the following form:

L+
1 � f = x4D3

q2f(qx1, q−1x2, q−1x3) (64)

−x2D1
q2f(q−1x1),

L+
2 � f = x4D2

q2f(qx1, q−1x2, q−1x3)

−x3D1
q2f(q−1x1),

L−
1 � f = qx3D4

q−2f(qx1, q−1x2, qx3)

−qx1D2
q−2f(qx1),

L−
2 � f = qx2D4

q−2f(qx1, qx2, q−1x3)

−qx1D3
q−2f(qx1),

K1 � f = f(q−1x1, qx2, q−1x3, qx4),

K2 � f = f(q−1x1, q−1x2, qx3, qx4),

Λ± 1
2 � f = f(q±1x1, q±1x2, q±1x3, q±1x4).
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Accordingly, the representations of the partial derivatives
∂̂i, i = 1, . . . , 4, can be written as

∂̂1 � f = q−1D4
q−2f(q−1x2, q−1x3) (65)

+q−1λx1D2
q−2D3

q−2f,

∂̂2 � f = D3
q−2f(q−1x1),

∂̂3 � f = D2
q−2f(q−1x1),

∂̂4 � f = qD1
q−2f.

For the sake of simplicity the representations of the unhat-
ted partial derivatives refer to a different ordering, namely
X4X3X2X1. In this setting they are given by

∂4 �̃ f = qD1
q2f(qx2, qx3)− qλx4D2

q2D3
q2f, (66)

∂̂3 �̃ f = D2
q2f(qx4),

∂̂2 �̃ f = D3
q2f(qx4),

∂̂1 �̃ f = q−1D4
q2f,

and if we want to have representations belonging to one
given ordering only, we can apply the formulae

∂̂i � (Û−1f) = Û−1(∂̂i �̃ f), (67)

∂i �̃ (Ûf) = Û(∂i � f).

with

Û−1f =
∞∑

i=0

λi (x
2x3)i

[[i]]q−2 !
q−(n̂2+n̂3)(n̂1+n̂4+i)

·
(
D4

q−2D1
q−2

)i

f(x), (68)

Ûf =
∞∑

i=0

(−λ)i (x2x3)i

[[i]]q2 !
q(n̂2+n̂3)(n̂1+n̂4+i)

· (D1
q2D4

q2

)i
f(x). (69)

Using the conjugation properties [15]

X1 = q−1X4, (70)

X2 = X3,

X3 = X2,

X4 = qX1,

∂1 = −q−5∂̂4, (71)

∂2 = −q−4∂̂3,

∂3 = −q−4∂̂2,

∂4 = −q−3∂̂1,

L±
i = q∓2L∓

i , i = 1, 2, (72)

and taking the considerations mentioned in the last section
into account we again find the translation rules

f 	 ∂i j↔j′
←→ −q−4∂̂i′

� f, (73)

f 	 ∂̂i j↔j′
←→ −q4∂i′

� f, i = 1, . . . , 4,

f 	 L+
i

j↔j′
←→ q−3L−

i � f,

f 	 L−
i

j↔j′
←→ q3L+

i � f, i = 1, 2,

where i′ = 5− i. The symbol
j↔j′
←→ now indicates that one

can make a transition between the two expressions by the
substitution

xj ←→ xj′
, Dj

qa ←→ Dj′
qa , (74)

where j = 1, . . . , 4, j′ = 5− i. An example shall illustrate
this:

D1
q2D2

q2f(qx1, q2x3) (75)

j↔j′
←→ D4

q2D3
q2f(qx4, q2x2).

Last but not least we have to treat the representations of
the diagonal generators K1, K2, Λ, which can be derived
from the identity (38) quite easily. Thus we have

f 	 K1 = (K1)−1 � f, (76)

f 	 K2 = (K2)−1 � f,

f 	 Λ± 1
2 = Λ∓ 1

2 � f. (77)

4 q-Deformed Minkowski space

From a physical point of view q-deformed Minkowski space
[16–18]4 is the most interesting one of all considered cases.
In addition, a treatment is desirable which pays attention
to the central time element X0 [20]. The general form of
the commutation relations between partial derivatives and
space-time coordinates now reads [10]

∂AXB = ηAB + q−2(R̂−1
II )AB

CDXC∂D, (78)

A, B, C, D = 0, 3,±,

where ηAB denotes the metric and R̂II one of the two
R-matrices of q-deformed Minkowski spaces. For the sake
of simplicity we introduce the light cone coordinate X̃3 =
X3− X0 and the corresponding partial derivative ∂̃3 =
∂3− ∂0. In terms of these quantities the above relations
become

∂̃3X̃3 = X̃3∂̃3, (79)
4 For a different version of q-deformed Minkowski space see

also [19]
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∂̃3X+ = X+∂̃3+ q−1λX̃3∂+,

∂̃3X3 = 1 + q−2X3∂̃3+ q−2λλ−1
+ X̃3∂̃3+ q−2λX−∂+,

∂̃3X− = q−2X−∂̃3,

∂+X̃3 = q−2X̃3∂+, (80)

∂+X+ = X+∂+,

∂+X3 = X3∂+− λλ−1
+ X̃3∂+− λλ−1

+ X+∂̃3,

∂+X− = −q + q−2X−∂+− q−1λλ−1
+ X̃3∂3,

∂−X̃3 = X̃3∂−+ q−1λX−∂̃3, (81)

∂−X+ = −q−1+ q−2X+∂−+ q−2λX̃3∂0

+q−2λ2X−∂++ q−2λX3∂̃3

+q−1λλ−1
+ X̃3∂̃3,

∂−X3 = q−2X3∂−+ q−2λλ−1
+ X̃3∂−

+λλ−1
+ (1 + 2q−2)X−∂̃3+ q−1λX−∂0,

∂−X− = X−∂−,

∂0X̃3 = 1 + q−2X̃3∂0+ q−2λX−∂+− λλ−1
+ X̃3∂̃3, (82)

∂0X+ = q−2X+∂0+ q−1λX3∂+

−λλ−1
+ X̃3∂+− λλ−1

+ X+∂̃3,

∂0X3 = X3∂0− λλ−1
+ X̃3∂0

+q−1λλ−1
+ (X−∂+−X+∂−)

+q−2λλ−1
+ X3∂̃3− λλ−1

+ X̃3∂̃3,

∂0X− = X−∂0+ q−2λλ−1
+ X−∂̃3− λλ−1

+ X̃3∂−.

For the second differential calculus we have the relations

∂̂AXB = ηAB + q2(R̂II)AB
CDXC ∂̂D, (83)

which gives in a more explicit form

ˆ̃
∂3X̃3 = X̃3 ˆ̃

∂3, (84)

ˆ̃
∂3X− = X− ˆ̃

∂3 − qλX̃3∂̂−,

ˆ̃
∂3X3 = 1 + q2X3 ˆ̃

∂3 − q2λλ−1
+ X̃3 ˆ̃

∂3 − q2λX+∂̂−,

ˆ̃
∂3X+ = q2X+ ˆ̃

∂3,

∂̂−X̃3 = q2X̃3∂̂−, (85)

∂̂−X− = X−∂̂−,

∂̂−X3 = X3∂̂−+ λλ−1
+ X̃3∂̂−+ λλ−1

+ X− ˆ̃
∂3,

∂̂−X+ = −q−1+ q2X+∂̂−+ qλλ−1
+ X̃3 ˆ̃

∂3,

∂̂+X̃3 = X̃3∂̂+− qλX+ ˆ̃
∂3, (86)

∂̂+X− = −q + q2X−∂̂+− q2λX̃3∂̂0+ q2λ2X+∂̂−

−q2λX3 ˆ̃3
∂ − qλλ−1

+ X̃3 ˆ̃
∂3,

∂̂+X3 = q2X3∂̂+− q2λλ−1
+ X̃3∂̂+

−λλ−1
+ (1 + 2q2)X+ ˆ̃

∂3 − qλX+∂̂0,

∂̂+X+ = X+∂̂+,

∂̂0X̃3 = 1 + q2X̃3∂̂0− q2λX+∂̂−+ λλ−1
+ X̃3 ˆ̃

∂3, (87)

∂̂0X− = q2X−∂̂0− qλX3∂̂−

+λλ−1
+ X̃3∂̂−+ λλ−1

+ X− ˆ̃
∂3,

∂̂0X3 = X3∂̂0+ λλ−1
+ X̃3∂̂0+ qλλ−1

+ (X−∂̂+−X+∂̂−)

−q2λλ−1
+ X3 ˆ̃

∂3 + λλ−1
+ X̃3 ˆ̃

∂3,

∂̂0X+ = X+∂̂0− q2λλ−1
+ X+ ˆ̃

∂3 + λλ−1
+ X̃3∂̂+.

From these relations we can again deduce a Hopf structure
[21]. In terms of Lorentz generators T+, T−, τ3, T 2, S1,
τ1, σ2 and the scaling operator Λ the Hopf structure of
the derivatives ∂0, ∂+, ∂−, ∂̃3 becomes

∆(∂̃3) = ∂̃3⊗ 1 + Λ
1
2 τ1⊗ ∂̃3 (88)

−q
1
2 λ

1
2
+λΛ

1
2 (τ3)− 1

2 S1⊗ ∂+,

∆(∂+) = ∂+⊗ 1 + Λ
1
2 (τ3)− 1

2 σ2⊗ ∂+

−q
3
2 λ

− 1
2

+ λΛ
1
2 T 2⊗ ∂̃3,

∆(∂−) = ∂−⊗ 1 + Λ
1
2 (τ3)

1
2 τ1⊗ ∂−

−q− 1
2 λ

1
2
+λΛ

1
2 S1⊗ ∂0

−λ2Λ
1
2 (τ3)− 1

2 T−S1⊗ ∂+

+q− 1
2 λ

− 1
2

+ λΛ
1
2 τ1T−⊗ ∂̃3

−q− 3
2 λ

− 1
2

+ λΛ
1
2 S1⊗ ∂̃3,

∆(∂0) = ∂0⊗ 1 + Λ
1
2 σ2⊗ ∂0

−q
1
2 λ

− 1
2

+ λΛ
1
2 T 2(τ3)

1
2 ⊗ ∂−

+q
1
2 λ

− 1
2

+ λΛ
1
2

(
τ3)− 1

2 T−σ2⊗ ∂+

+q
3
2 λ

− 1
2

+ λΛ
1
2

(
τ3)− 1

2 S1⊗ ∂+

−λ−1
+ Λ

1
2 λ2T−T 2⊗ ∂̃3

−qλ−1
+ Λ

1
2 (τ1− σ2)⊗ ∂̃3,
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S(∂̃3) = −Λ− 1
2 σ2∂̃3− q− 3

2 λ
1
2
+λΛ− 1

2 S1∂+, (89)

S(∂+) = −Λ− 1
2 τ1(τ3)

1
2 ∂+− q

3
2 λ

− 1
2

+ λΛ− 1
2 T 2(τ3)

1
2 ∂̃3,

S(∂−) = −Λ− 1
2 σ2(τ3)− 1

2 ∂−− q− 1
2 λ

1
2
+λΛ− 1

2 (τ3)− 1
2 S1∂0

+q−2λ2Λ− 1
2 (τ3)− 1

2 S1T−∂+

+q− 5
2 λ

− 1
2

+ λΛ− 1
2 (τ3)− 1

2 σ2T−∂̃3

− q+ 1
2 λ

− 1
2

+ λΛ− 1
2 (τ3)− 1

2 S∂̃3,

S(∂0) = −Λ− 1
2 τ1∂0− q

5
2 λ

− 1
2

+ λΛ− 1
2 T 2∂−

+q− 3
2 λ

− 1
2

+ λΛ− 1
2 τ1T−∂++ q− 1

2 λ
− 1

2
+ λΛ− 1

2 S1∂+

+qλ−1
+ Λ− 1

2 (σ2− τ1)∂̃3+ λ−1
+ λ2Λ− 1

2 T 2T−∂̃3,

ε(∂̃3) = ε(∂+) = ε(∂−) = ε(∂0) = 0. (90)

Similar expressions can be found for the second set of
derivatives:

∆(
ˆ̃
∂3) =

ˆ̃
∂3 ⊗ 1 + Λ− 1

2
(
τ3)− 1

2 σ2⊗ ˆ̃
∂3 (91)

−q
3
2 λ

1
2
+λΛ− 1

2 T 2⊗ ∂̂−,

∆(∂̂−) = ∂̂−⊗ 1 + Λ− 1
2 τ1⊗ ∂̂−

−q
1
2 λ

− 1
2

+ λΛ− 1
2 (τ3)− 1

2 S1⊗ ˆ̃
∂3,

∆(∂̂+) = ∂̂+⊗ 1 + Λ− 1
2 σ2⊗ ∂̂+

−q
1
2 λ

1
2
+λΛ− 1

2 T 2(τ3)
1
2 ⊗ ∂̂0

− q
1
2 λ

− 1
2

+ λΛ− 1
2 (τ3)− 1

2 T+σ2⊗ ˆ̃
∂3

−q
3
2 λ

− 1
2

+ λΛ− 1
2 (τ3)− 1

2 τ3T 2⊗ ˆ̃
∂3

+q2λ2Λ− 1
2 T 2T+⊗ ∂̂−,

∆(∂̂0) = ∂̂0⊗ 1 + Λ− 1
2 (τ3)

1
2 τ1⊗ ∂̂0

−q− 1
2 λ

− 1
2

+ λΛ− 1
2 S1⊗ ∂̂+

−q
1
2 λ

− 1
2

+ λΛ− 1
2 (qT+τ1− T 2)⊗ ∂̂−

+λ−1
+ λ2Λ− 1

2 (τ3)− 1
2 T+S1⊗ ˆ̃

∂3

+q−1λ−1
+ Λ− 1

2 (τ3)− 1
2 τ3τ1⊗ ˆ̃

∂3

−q−1λ−1
+ Λ− 1

2 (τ3)− 1
2 σ2⊗ ˆ̃

∂3,

S(
ˆ̃
∂3) = −Λ

1
2 τ1(τ3)

1
2

ˆ̃
∂3 (92)

−q
3
2 λ

1
2
+λΛ

1
2 T 2(τ3)

1
2 ∂̂−,

S(∂̂−) = −Λ
1
2 σ2∂̂−− q− 3

2 λ
− 1

2
+ λΛ

1
2 S1 ˆ̃

∂3,

S(∂̂+) = −Λ
1
2 τ1∂̂+− q

5
2 λ

1
2
+λΛ

1
2 T 2∂̂0

−q
3
2 λ

− 1
2

+ λΛ
1
2 (qτ1T++ T 2)

ˆ̃
∂3

−q4λ2Λ
1
2 T 2T+∂̂−,

S(∂̂0) = −Λ
1
2 (τ3)− 1

2 σ2∂̂0

−q− 1
2 λ

− 1
2

+ λΛ
1
2 (τ3)− 1

2 S1∂̂+

−q
3
2 λ

− 1
2

+ λΛ
1
2 (τ3)− 1

2 σ2T+∂̂−

+q
5
2 λ

− 1
2

+ λΛ
1
2 (τ3)− 1

2 τ3T 2∂̂−

−λ−1
+ λ2Λ

1
2 (τ3)− 1

2 T+S1 ˆ̃
∂3

−qλ−1
+ Λ

1
2 (τ3)− 1

2 (σ2− τ3τ1)
ˆ̃
∂3,

ε(
ˆ̃
∂3) = ε(∂̂+) = ε(∂̂−) = ε(∂̂0) = 0. (93)

The Leibniz rules can be read off from the formulae for
the co-product as usual, if one knows the representations
of the given Lorentz generators and the scaling operator
Λ. These representations, however, can be obtained from
the commutation relations [21]

T+X0 = X0T+, (94)

T+X̃3 = X̃3T++ q− 3
2 λ

1
2
+X+,

T+X+ = q−2X+T+,

T+X− = q2X−T++ q− 1
2 λ

1
2
+X3,

T−X0 = X0T−, (95)

T−X̃3 = X̃3T−+ q
3
2 λ

1
2
+X−,

T−X− = q2X−T−,

T−X+ = q−2X+T−+ q
1
2 λ

1
2
+X3,

τ3X0 = X0τ3, (96)

τ3X̃3 = X̃3τ3,

τ3X+ = q−4X+τ3,

τ3X− = q4X−τ3,

T 2X̃3 = q−1X̃3T 2, (97)

T 2X+ = qX+T 2,

T 2X− = q−1X−T 2+ q− 3
2 λ

− 1
2

+ X̃3τ1,

T 2X3 = qX3T 2− qλ−1
+ λX̃3T 2+ q− 1

2 λ
1
2
+X+τ1,

S1X̃3 = qX̃3S1, (98)

S1X− = qX−S1,
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S1X+ = q−1X+S1− q− 1
2 λ

− 1
2

+ X̃3σ2,

S1X3 = q−1X3S1+ q−1λ−1
+ λX̃3S1− q

1
2 λ

− 1
2

+ X−σ2,

τ1X̃3 = qX̃3τ1, (99)

τ1X− = q−1X−τ1,

τ1X+ = qX+τ1− q
3
2 λ

− 1
2

+ λ2X̃3T 2,

τ1X3 = q−1X3τ1+ q−1λ−1
+ λX̃3τ1− q

1
2 λ

− 1
2

+ λ2X−T 2,

σ2X̃3 = q−1X̃3σ2, (100)

σ2X+ = q−1X+σ2,

σ2X− = qX−σ2+ q
1
2 λ

− 1
2

+ λ2X̃3S1,

σ2X3 = qX3σ2− qλ−1
+ λX̃3σ2+ q− 1

2 λ
− 1

2
+ λ2X+S1,

ΛXA = q−2XAΛ, A = 0, 3,±. (101)

To calculate representations for partial derivatives and
Lorentz generators we need to take special considerations
into account. We want to demonstrate this by a short ex-
ample. By multiple use of the relations (84) and (85), one
can show that the following identity holds:

∂̃3(X3)n (102)

=
[n
2 ]∑

k=0

(q−2λ2λ−1
+ )k ·

n−2k∑
j1=0

n−2k−j1∑
j2=0

. . .

n−2k−j1−...−j2k−1∑
j2k=0

· q−2(n−2k)+2(j2+j4+...+j2k)

· (X3+ λλ−1
+ X̃3)n−2k (X−X+)k∂̃3

+q−2λ

[n−1
2 ]∑

k=0

(q−2λ2λ−1
+ )k ·

n−2k−1∑
j1=0

. . .

n−2k−1−j1−...−j2k∑
j2k+1=0

· q−2(j1+j3+...+j2k+1)

· (X3+ λλ−1
+ X̃3)n−2k−1(X−X+)kX−∂+

+
[n−1

2 ]∑
k=0

(q−2λ2λ−1
+ )k ·

n−2k−1∑
j1=0

. . .

n−2k−1−j1−...−j2k∑
j2k+1=0

· q−2(j1+j3+...+j2k+1)

· (X3+ λλ−1
+ X̃3)j1+j2+...j2k+1

· (X−X+)k(X3)n−2k−1−j1−...−j2k+1 ,

where [s] denotes the biggest integer not being bigger than
s. To go further, one has to overcome two difficulties.
The first one is to give normal ordered expressions for
(X+X−)k and (X−X+)k. Towards this aim we start from
the relations

r̂2 = −aq(X0, X̃3) + λ+X−X+, (103)

r̂2 = −aq−1(X0, X̃3) + λ+X+X−,

where
aq(X0, X̃3) = q2(X̃3)2+ qλ+X0X̃3, (104)

and solve for X−X+ and X+X−. Thus we can write

(X−X+)k = (λ+)−k(r̂2+ aq(X0, X̃3))k (105)

= (λ+)−k
k∑

i=0

(
k

i

)
r̂2i(aq(X0, X̃3))k−i

= (λ+)−k
k∑

i=0

(
k

i

) i∑
p=0

λp
+(X+)p

·(aq(X0, q2pX̃3))k−i

·(Sq)i,p(X0, X̃3)(X−)p,

(X+X−)k = (λ+)−k(r̂2+ aq−1(X0, X̃3))k (106)

·(λ+)−k
k∑

i=0

(
k

i

) i∑
p=0

λp
+(X+)p

·(aq−1(X0, q2pX̃3))k−i

·(Sq)i,p(X0, X̃3)(X−)p,

where

(Sq)k,v(x0, x̃3) (107)

=

{
1, if v = k,∑v

j1=0

∑j1
j2=0

. . .
∑jk−v−1

jk−v=0

∏k−p
l=1 aq(q2jl x̃3).

For the second equality in (105) we have used the fact that
r̂2 and aq commute. Furthermore, for the third equality in
(105) we have inserted the normal ordered expression for
powers of r̂2 which has been taken from [6].

The second problem we have to address has to do with
the question: how can we generalize our representations
to arbitrary functions? As opposed to the Euclidean cases
we cannot rewrite the recursive sums in formula (102) in
terms of q-numbers only. However, it should be rather ob-
vious that these recursive sums can be identified with the
following quantities:

(Kn)(k1,...,kl)
a1,...,al

(108)

≡ (Kn)(k1)
a1
◦ (Kn−k1)

(k2)
a2
◦ . . . ◦ (Kn−k1−...−kl

)(kl)
al

,

where

(Kn)(k)
a ≡

n−k∑
j1=0

n−k−j1∑
j2=0

. . .

n−k−j1−...−jk−1∑
jk=0

aj1+j2+...+jk

(109)
and

(Kn)(k)
a ◦ (Kn−k)(l)b (110)
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≡
n−k−l∑
j1=0

. . .

n−k−l−j1−...−jk+l−1∑
jk+l=0

aj1+...+jk · bjk+1+...+jk+l .

Now, the point is that these quantities can be used for
defining new linear operators, if we require for arbitrary
powers of x the following to hold:

D(k1,...,kl)
a1,...,al

xn = (Kn)(k1,...,kl)
a1,...,al

xn−k1−...−kl .

Thus, it remains to derive general formulae for the ac-
tion of these operators, a problem which is covered in Ap-
pendix B.

In principle, we have collected everything needed for
writing down representations of the partial derivatives and
Lorentz generators. Before doing this let us fix some no-
tation that will be used in the following. First of all we
abbreviate

(D3
1,q)

k,l ≡ D
(k,l)
1,q2 , (111)

(D3
2,q)

k,l ≡ D
(k,l)
y−/x3,q2y−/x3 ,

(D3
3,q)

k,l
i,j ≡ D

(k,l,i,j)
y+/x3,q2y+/x3,y−/x3,q2y−/x3 ,

where

y± = y±(x0, x̃3) = x0+
2q±1

λ+
x̃3. (112)

It should be clear that these operators have to act on the
coordinate x3 only. Additionally, we make the following
definitions:(

M±)k

i,j
(x) ≡ (

M±)k

i,j
(x0, x+, x̃3, x−) (113)

=
(

k

i

)
λj

+
(
aq±1(q2j x̃3)

)i (
x+x−)j (Sq)k−j,j(x0, x̃3),

(M+−)k,l
i,j,u(x) ≡ (M+−)k,l

i,j,u(x0, x+, x̃3, x−) (114)

=
(

k

i

)(
l

j

)
λu

+
(
aq(q2ux̃3)

)k−i (
aq−1(q2ux̃3)

)l−j

· (x+x−)u (Sq)i+j,u(x0, x̃3).

Notice that in what follows the normal ordering for which
our formulae shall work is indicated by the sequence of
coordinates the given functions depend on. In this way
the representations of the conjugated partial derivatives
become

ˆ̃
∂3 � f(x+, x̃3, x3, x−) (115)

=
∞∑

k=0

αk
+

∑
0≤i+j≤k

(M−)k
i,j(x)(T̃ 3)i

jf,

∂̂− � f(x+, x̃3, x3, x−) (116)

= −q−1D+
q2f

+
λ

λ+

∞∑
k=0

αk
+

∑
0≤i+j≤k

{
(M+)k

i,j(x)(T−
1 )i

jf

+ q−1(M−)k
i,j(x)(T−

2 )i
jf

}
,

∂̂+ � f(x+, x̃3, x3, x−) (117)

= −q

∞∑
k=0

αk
+

∑
0≤i+j≤k

{
(M−)k

i,j(x)(T+
1 )i

jf

+ λ(M+)k
i,j(x)(T+

2 )i
jf

}
− q

λ

λ+

∑
0≤k+l<∞

αk+l
+

·
k∑

i=0

l∑
j=0

∑
0≤u≤i+j

(M+−)k,l
i,j,u(x)(T+

3 )k,l
u f

− λ

λ+

∑
0≤k+l<∞

αk+l+1
+

·
k∑

i=0

l+1∑
j=0

∑
0≤u≤i+j

(M+−)k,l+1
i,j,u (x)(T+

4 )k,l
u f,

∂̂0 � f(x+, x̃3, x3, x−) (118)

=
∞∑

k=0

αk
+

∑
0≤i+j≤k

{
(M+)k

i,j(x)(T 0
1 )i

jf

− q
λ

λ+
(M−)k

i,j(x)(T 0
2 )i

jf

}

−q2 λ

λ+

∑
0≤k+l<∞

αk+l
+

·
k∑

i=0

l∑
j=0

∑
0≤u≤i+j

(M+−)k,l
i,j,u(x)(T 0

3 )k,l
u f

+
β

λ+

∑
0≤k+l<∞

αk+l+1
+

·
k+1∑
i=0

l∑
j=0

∑
0≤u≤i+j

(M+−)k+1,l
i,j,u (x)(T 0

4 )k,l
u f

+λ−1
+

∑
0≤k+l<∞

αk+l+1
+

·
k∑

i=0

l+1∑
j=0

∑
0≤u≤i+j

(M+−)k,l+1
i,j,u (x)(T 0

5 )k,l
u f,

where

α+ = −q2 λ2

λ2
+

, β = q + λ+. (119)

To get expressions with a more obvious structure we have
introduced the abbreviations

(T 3/0)i
jf =

[
(O3/0)if

∣∣∣
x3→x0+x3/0

]
(q2jx3/0), (120)
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(T−
1 )i

jf =
[
(O−

1 )if
∣∣
x3→x0+x3/0

]
(q2(j+1)x3/0), (121)

(T−
2 )i

jf =
[
(O−

2 )if
∣∣
x3→x0+x3/0

]
(q2jx3/0),

(T 0
1 )i

jf (122)

=
[
(O0

1)if
∣∣
x3→y+

− q2 λ

λ+
(O0

2)if
∣∣
x3→q2y+

]
(q2jx3/0),

(T 0
2 )i

jf

=
[
(O0

3)if
∣∣
x3→x0+x3/0 + (O0

4)if
∣∣
x3→q2y−

]
(q2jx3/0),

(T 0
3 )k,l

u f =
[
(Q0

1)k,lf
∣∣
x3→x0+x3/0

]
(q2ux3/0),

(T 0
4 )k,l

u f =
[
(Q0

2)k,lf
∣∣
x3→x0+x3/0

]
(q2ux3/0),

(T 0
5 )k,l

u f =
[
(Q0

3)k,lf
∣∣
x3→x0+x3/0

]
(q2ux3/0),

(T+
1 )i

jf =
[
(O+

1 )if
∣∣
x3→q2y−

]
(q2jx3/0), (123)

(T+
2 )i

jf =
[
(O+

2 )if
∣∣
x3→y+

]
(q2jx3/0),

(T+
3 )k,l

u f =
[
(Q+

1 )k,lf
∣∣
x3→x0+x3/0

]
(q2ux3/0),

(T+
4 )k,l

u f =
[
(Q+

2 )k,lf
∣∣
x3→x0+x3/0

]
(q2ux3/0),

which, in turn, depend on the following operators:

(Õ3)kf = (D3
2,q)

k,k+1f(q2x+), (124)

(O−
1 )kf = x−(D3

2,q)
k+1,k+1f(q2x+), (125)

(O−
2 )kf = x̃3D+

q2(D3
2,q)

k,k+1f(q2x+),

(O0
1)kf = D̃3

q2(D3
1,q)

k,kf (126)

−q3λ−1
+ λ2x+x̃3 D+

q2D̃
3
q2(D3

1,q)
k,k+1f,

(O0
2)kf = x−(D3

1,q−1)k,k+1D−
q2f(q2x̃3),

(O0
3)kf = qx+D+

q2(D3
2,q)

k,k+1f,

(O0
4)kf = x̃3D+

q2(D3
1,q−1)k,kD−

q2f,

(Q0
1)k,lf = (x0+ q−1λx3)(D3

3,q)
k+1,k
l,l+1 f (127)

+qλ−1
+ λ(q + λ+)x+x̃3 D+

q2(D3
3,q)

k,k+1
l,l+1 f

−q3λ−1
+ λ2x+x̃3(x0+ q−1λx̃3)

·D+
q2(D3

3,q)
k+1,k+1
l,l+1 f,

(Q0
2)k,lf = (D3

3,q)
k+1,k+1
l,l+1 f,

(Q0
3)k,lf = q−1(D3

3,q)
k+1,k
l+1,l+1f

−q2λ−1
+ λ2x+x̃3 D+

q2(D3
3,q)

k+1,k+1
l+1,l+1 f,

(O+
1 )kf = (D3

1,q−1)k,kD−
q2f, (128)

(O+
2 )kf = x+D̃3

q2(D3
1,q)

k,k+1f,

(Q+
1 )k,lf = (q + λ+)x+(D3

3,q)
k,k+1
l,l+1 f (129)

−q2λx+(x0+ q−1λx3) (D3
3,q)

k+1,k+1
l,l+1 f,

(Q+
2 )k,lf = x+(D3

3,q)
k+1,k+1
l+1,l+1 f.

In the same way the representations of the Lorentz gener-
ators are explicitly given by

Λ � f(x+, x0, x̃3, x−) (130)

= f(q−2x+, q−2x0, q−2x̃3, q−2x−),

τ3 � f(x+, x0, x̃3, x−) (131)

= f(q−4x+, q4x−),

T+ � f(x+, x0, x̃3, x−) (132)

= q− 1
2 λ

1
2
+

[
x0D−

q2f + x̃3D−
q4f + qx+D̃3

q2f
]
(q−2x+),

T− � f(x+, x0, x̃3, x−) (133)

= q
1
2 λ

1
2
+

[
x0D+

q2f + x̃3D+
q4f + qx−D̃3

q2f
]
(q−2x+),

T 2 � f(x+, x3, x̃3, x−) (134)

= λ
− 1

2
+

∞∑
k=0

αk
0

∑
0≤i+j≤k

{
q

1
2 (M−)k

i,j(x)(TT
1 )i

jf

+q− 1
2 (M+)k

i,j(x)(TT
2 )i

jf
}

,

S1 � f(x+, x3, x̃3, x−) (135)

= −qλ
− 1

2
+

∞∑
k=0

αk
0

∑
0≤i+j≤k

{
q

1
2 (M−)k

i,j(x)(TS
1 )i

jf

+q− 1
2 (M+)k

i,j(x)(TS
2 )i

jf
}

,

τ1 � f(x+, x3, x̃3, x−) (136)

=
∞∑

k=0

αk
0

∑
0≤i+j≤k

{
(M+)k

i,j(x)(T τ
2 )i

jf

− λ2

λ+
(M−)k

i,j(x)(T τ
1 )i

jf

}
,

σ2 � f(x+, x3, x̃3, x−) (137)
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=
∞∑

k=0

αk
0

∑
0≤i+j≤k

(M−)k
i,j(x)(T σ)i

jf,

where α0 = −(λ/λ+)2. For the purpose of abbreviation
we have again set

(TT
1 )k

j � f =
[
(OT

1 )kf
∣∣
x3→y−

]
(q2jx3/0), (138)

(TT
2 )k

j � f =
[
(OT

2 )kf
∣∣
x3→y+

]
(q2jx3/0), (139)

(TS
1 )k

j � f =
[
(OS

1 )kf
∣∣
x3→y−

]
(q2jx3/0), (140)

(TS
2 )k

j � f =
[
(OS

2 )kf
∣∣
x3→y+

]
(q2jx3/0), (141)

(T τ
1 )k

j � f =
[
(Oτ

1 )kf |x3→y−

]
(q2jx3/0), (142)

(T τ
2 )k

j � f =
[
(Oσ)kf |x3→y−

]
(q2jx3/0), (143)

where

(OT
1 )kf = q−1x̃3(D3

1,q−1)k,k (144)

·D−
q2f(qx+, q−1x̃3, q−1x−),

(OT
2 )kf = x+(D3

1,q)
k,k+1f(qx+, qx̃3, q−1x−),

(OS
1 )kf = q−1x̃3(D3

1,q−1)k,k (145)

·D+
q2f(q−1x+, q−1x̃3, qx−),

(OS
2 )kf = x−(D3

1,q−1)k,k+1f(q−1x+, qx̃3, qx−),

(Oτ
1 )kf = (x̃3)2D+

q2(D3
1,q−1)k,k (146)

·D−
q2f(qx+, q−1x̃3, q−1x−),

(Oτ
2 )kf = (D3

1,q)
k,kf(qx+, qx̃3, q−1x−)

−qλ−1
+ λ2x+x̃3D+

q2

· (D3
1,q)

k,k+1f(qx+, qx̃3, q−1x−),

(Oτ
3 )kf = qx̃3x−(D3

1,q−1)k,k+1

·D−
q2f(qx+, qx̃3, q−1x−),

(Oσ)kf = (D3
1,q−1)k,kf(q−1x+, q−1x̃3, qx−). (147)

Now we deal with representations for the partial deriva-
tives ∂µ, µ = 0,±, 3̃ which can directly be obtained from
representations for the conjugated ones, if we apply the
following transformation:

∂± �̃ f
±
q

↔
↔

∓
1/q←→ ∂̂∓ � f, (148)

∂3 �̃ f
±
q

↔
↔

∓
1/q←→ ∂̂3 � f,

which means concretely that the substitutions

D±
qq → D∓

q−q , n̂± → −n̂∓, q±1 → q∓1 (149)

interchange the different representations. It is very impor-
tant to notice that the representations on the left hand
side of (148) have to refer to a different normal ordering
given by X−X3X̃3X+. However, by the identities

∂µ � (Û−1f) = Û−1(∂µ�̃f), (150)

∂̂µ �̃ (Ûf) = Û( ∂̂µ � f),

with

Û−1f (151)

=
∞∑

i=0

(
λ

λ+

)i ∑
k+j=i

(Rq)k,j(x)
[[k]]q2 ![[j]]q2 !

· q2n̂+n̂−+(n̂++n̂−)(2n̂3+i)+2n̂3i

·
(
(D+

q2)i(D−
q2)if

)
(x0, qj−kx+, x̃3, qj−kx−),

Ûf (152)

=
∞∑

i=0

(
− λ

λ+

)i ∑
k+j=i

(Rq−1)k,j(x)
[[k]]q−2 ![[j]]q−2 !

· q−2n̂+n̂−−(n̂++n̂−)(2n̂3+i)−2n̂3i

·
(
(D+

q−2)i(D−
q−2)if

)
(x0, qk−jx+, x̃3, qk−jx−)

the representations for ordering X−X3X̃3X+ can be trans-
formed into those for reversed ordering X+X3X̃3X−. The
reason for the existence of (148) should be clear from the
fact that the substitutions

∂̃3 → ˆ̃
∂3, (153)

∂0 → ∂̂0,

∂± → ∂̂∓,

X± → X∓,

q → q−1

interchange the relations (79)–(82) and (84)–(87).
Finally, from the conjugation properties [10]

X0 = X0, (154)

X̃3 = X̃3,

X± = −q±1X∓,

∂3 = −q4 ˆ̃
∂3, (155)

∂0 = −q4∂̂0,



C. Bauer, H. Wachter: Operator representations on quantum spaces 273

∂+ = −q5∂̂−,

∂− = −q3∂̂+,

T± = q∓2T∓ (156)

we can derive the following rules for transforming right
and left representations into each other:

f 	 ∂0 +↔−←→ −q4∂̂0 � f, (157)

f 	 ∂̃3 +↔−←→ −q4 ˆ̃
∂3 � f,

f 	 ∂∓ +↔−←→ −q4∂̂∓ � f,

f 	 ∂̂0 +↔−←→ −q−4∂0 � f, (158)

f 	
ˆ̃
∂3 +↔−←→ −q−4∂̃3 � f,

f 	 ∂̂± +↔−←→ −q−4∂∓ � f,

f 	 T± +↔−←→ −q∓3T∓ � f, (159)

where the symbol +↔−←→ has the same meaning as in Sect. 2.
Once again the simplest way to determine the right repre-
sentations of the remaining generators is described by the
identity

f 	 h = S−1(h) � f. (160)

With the Hopf structure of the Lorentz generators at hand
[11] we end up with the expression

f 	 T 2 = −(τ3)
1
2 T 2 � f, (161)

f 	 S1 = −q2(τ3)− 1
2 S1 � f,

f 	 τ1 = σ2 � f, (162)

f 	 σ2 = τ1 � f,

f 	 τ3 = (τ3)−1 � f, (163)

f 	 Λ = Λ−1 � f.

5 Remarks

Let us end with a few comments on our representations.
First of all, from a physical point of view partial deriva-
tives are objects generating translations in time or space.
According to

∂Af = (∂Af)0 +
∑
i>0

λi(∂Af)i, (164)

their representations can be divided up into one part reduc-
ing to ordinary derivatives in the undeformed limit (q = 1)
and a second part of correction terms disappearing in that
case. The existence of the correction terms can be well un-
derstood, if one assumes that non-commutativity results

from a coupling of the different directions in space. Thus
a flow of momentum in only one direction is in general not
possible and the corrections should be responsible for this
feature. So far we can sum up that the situation in non-
commutative spaces seems to be similar to that of solids.
In fact, if such a solid state has to undergo a deformation in
some direction, the other directions will also be influenced
due to their coupling.

A Notation

(1) The q-number is defined by [12]

[[c]]qa ≡ 1− qac

1− qa
, a, c ∈ C. (165)

(2) For m ∈ N, we can introduce the q-factorial by setting

[[m]]qa ! ≡ [[1]]qa [[2]]qa . . . [[m]]qa , (166)

[[0]]qa ! ≡ 1.

(3) There is also a q-analogue of the usual binomial coeffi-
cients, the so-called q-binomial coefficients defined by the
formula [

α

m

]
qa

(167)

≡ [[α]]qa [[α− 1]]qa . . . [[α−m + 1]]qa

[[m]]qa !

where α ∈ C, m ∈ N.
(4) Commutative co-ordinates are usually denoted by small
letters (e.g. x+, x−, etc.), non-commutative co-ordinates
in capital (e.g. X+, X−, etc.).
(5) Note that in functions only such variables are explicitly
displayed which are affected by a scaling. For example, we
write

f(q2x+)

instead of

f(q2x+, x3, x−).

(6) Arguments enclosed in parentheses shall refer to the
first object on their left. For example, we have

D+
q2f

(
q2x+)

= D+
q2

(
f

(
q2x+))

or

D+
q2

[
D+

q2f + D−
q2f

](
q2x+)

= D+
q2

([
D+

q2f + D−
q2f

](
q2x+))

.

However, the symbol |x′→x applies to the whole expression
on its left side reaching up to the next opening bracket or
± sign.
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(7) The Jackson derivative referring to the coordinate xA

is defined by

DA
qaf ≡ f(xA)− f(qaxA)

(1− qa)xA
, (168)

where f may depend on other coordinates as well. Higher
Jackson derivatives are obtained by applying the above
operator DA

qa several times:

(DA
qa)if ≡ DA

qaDA
qa . . . DA

qa︸ ︷︷ ︸
i times

f. (169)

(8) Additionally, we need operators of the following form:

n̂A ≡ xA ∂

∂xA
. (170)

B New Jackson derivatives

In the calculations of Sect. 4 we have introduced the fol-
lowing quantities:

(Kn)(k)
a ≡

n−k∑
j1=0

n−k−j1∑
j2=0

. . .

n−k−j1−...−jk−1∑
jk=0

aj1+j2+...+jk .(171)

Additionally, we have defined an operation ◦ by

(Kn)(k)
a ◦ (Kn−k)(l)b (172)

≡
n−k−l∑
j1=0

. . .

n−k−l−j1−...−jk+l−1∑
jk+l=0

aj1+...+jk · bjk+1+...+jk+l ,

leading to new expressions denoted by

(Kn)(k1,...,kl)
a1,...,al

(173)

≡ (Kn)(k1)
a1
◦ (Kn−k1)

(k2)
a2
◦ . . . ◦ (Kn−k1−...−kl

)(kl)
al

.

Furthermore these new quantities show a number of simple
properties, for instance,
(1)

(Kn)(k)
1 =

(
n

k

)
, (174)

(2)
(Kn)(k,l)

a,a = (Kn)(k+l)
a , (175)

(3)

(Kn)(k1,...,kl)
a1,...,al

= (Kn)(kπ(1),...,kπ(l))
aπ(1),...,aπ(l) , (176)

where π is any permutation of the {1, . . . , l}. Due to these
properties the quantities of (173) can be divided into three
different sets:
(1)

(Kn)(k1,...,kl)
a1,...,al

, (177)

with ai �= 1 for all i ∈ {1, . . . , l},
(2)

(Kn)(k1,...,kl)
a1,...,al−1,1, (178)

with ai �= 1 for all i ∈ {1, . . . , l − 1},
(3)

(Kn)(k)
1 .

It is now our aim to show that each (Kn)(k1,...,kl)
a1,...,al can be

expressed in terms of the binomials (Kn)(k)
1 . Towards this

end we need the following additional rules:
(1)

(Kn)(k)
a = (1− a)−k −

k−1∑
m=0

an−m(1− a)m−k(Kn)(m)
1 ,(179)

(2)

(Kn)(k,l)
a,1 (180)

=
l∑

m=0

(−1)l−m

(
k + l − 1−m

k − 1

)

· (1− a)m−k−l(Kn)(m)
1

+(−1)l+1
k−1∑
m=0

an−m

(
k + l − 1−m

l

)

· (1− a)m−k−l(Kn)(m)
1 ,

(3)

(Kn)(k1,...,kl)
a1,...,al

◦
(
(b)n−k1−...−kl (Kn−k1−...−kl

)(q1,...,qp)
c1,...,cp

)
(181)

= bn−k1−...−kl

(
(Kn)(k1,...,kl)

a1
b ,...,

al
b

◦ (Kn−k1−...−kl
)(q1,...,qp)
c1,...,cp

)
,

which can be verified in a quite elementary way. From these
rules we find a recursion relation; we have

(Kn)(k1,...,kl)
a1,...,al

(182)

= (Kn)(k1,...,kl−1)
a1,...,al−1

◦ (Kn−k1−...−kl−1)
(kl)
al

= −
kl−1∑
m=0

a
n−k1−...−kl−1−m
l · (1− al)m−kl(Kn)(k1,...,kl−1,m)

a1
al

,...,
al−1

al
,1

+(1− al)−kl(Kn)(k1,...,kl−1)
a1,...,al−1

.

Using this relation repeatedly the quantities of the first
set can now be reduced to those of the second one, as one
gets

(Kn)(k1,...,kl)
a1,...,al

(183)

= −
l∑

i=1

(
l∏

j=i+1

(1− aj)−kj )
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·
ki−1∑
m=0

a
n−k1−...−ki−1−m
i · (1− ai)m−ki(Kn)(k1,...,ki−1,m)

a1
ai

,...,
ai−1

ai
,1

.

In the same way the quantities of the second set can, in
turn, be reduced to those of the last one by applying an-
other recursion relation given by

(Kn)(k1,...,kl)
a1,...,al−1,1 (184)

= (Kn)(k1,...,kl−2)
a1,...,al−2

◦ (Kn−k1−...−kl−2)
(kl−1,kl)
al−1,1

=
kl∑

m=0

(−1)kl−m

(
kl + kl−1 −m− 1

kl−1 − 1

)

· (1− al−1)m−kl−kl−1(Kn)(k1,...,kl−2,m)
a1,...,al−2,1

−(−1)kl

kl−1−1∑
m=0

(
kl + kl−1 −m− 1

kl

)

· an−k1−...−kl−2−m
l−1 (1− al−1)m−kl−kl−1

· (Kn)(k1,...,kl−2,m)
a1

al−1
,...,

al−2
al−1

,1
.

If we introduce operators acting on powers xn by

D(k1,...,kl)
a1,...,al

xn =

{
(Kn)(k1,...,kl)

a1,...,al xn−k1−...−kl ,

0, if n < k1 + . . . + kl,
(185)

the relations (183) and (184) correspond to the identities

D(k1,...,kl)
a1,...,al

f(x) (186)

= −
l∑

i=1

(
l∏

j=i+1

(x− ajx)−kj ) ·
ki−1∑
m=0

(x− aix)m−ki

·
(

D
(k1,...,ki−1,m)
a1
ai

,...,
ai−1

ai
,1

f

)
(aix),

where ai �= 1 for all i ∈ {1, . . . , l}, and

D
(k1,...,kl)
a1,...,al−1,1f(x) (187)

=
kl∑

m=0

(−1)kl−m

(
kl + kl−1 −m− 1

kl−1 − 1

)

· (x− al−1x)m−kl−kl−1 D
(k1,...,kl−2,m)
a1,...,al−2,1 f(x)

−(−1)kl

kl−1−1∑
m=0

(
kl + kl−1 −m− 1

kl

)

· (x− al−1x)m−kl−kl−1

(
D

(k1,...,kl−2,m)
a1

al−1
,...,

al−2
al−1

,1
f

)
(al−1x),

where ai �= 1 for all i ∈ {1, . . . , l−1}. With these formulae
at hand one readily checks that the derivative operators

D
(k1,...,kl)
a1,...,al can always be expressed in terms of the simple

operators

D
(k)
1 f(x) =

1
k!

∂k

∂xk
f(x). (188)
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